USN

Sixth Semester B.E. Degree Examination, June/July 2013

Compiler Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

1 a. Explain the different phases of compiler, with a block diagram.

(10 Marks)

b. How is input buffering of lexical analyzer implemented?

(04 Marks)

- c. Construct transition diagrams for the following:
 - i) Relop
 - ii) Identifier
 - iii) Unsigned number

(06 Marks)

2 a. Explain any two error-recovery strategies in parser.

(04 Marks)

- b. Consider the following grammar:
 - $E \rightarrow I \mid E + E \mid E*E \mid (E)$

 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

- i) Check whether the grammar is ambiguous or not for the given input string w = a * b + a.
- ii) If ambiguous construct an equivalent unambiguous grammar.

(06 Marks)

c. Construct LL(1) parsing table for the grammar given below:

$$E \rightarrow E * T \mid T$$

$$T \rightarrow id + T \mid id$$

(10 Marks)

- 3 a. Define bottom-up parsing. Check the acceptance of the input string "bbb*b++" for the grammar: $E \rightarrow EE + |EE*| b$ (04 Marks)
 - b. Explain different actions in shift-reduce parser with an example. Also describe the conflicts during shift-reduce parsing. (06 Marks)
 - c. Construct SLR(1) parsing table for the following grammar:

$$S \rightarrow SA|A$$

$$A \rightarrow a$$

(10 Marks

4 a. Write an algorithm for constructing LR(1) items.

(05 Marks)

b. Construct LALR(1) parsing table for the following grammar:

$$S \rightarrow CC$$

$$C \rightarrow cC|d$$

(10 Marks)

c. Briefly explain Yacc generator.

(05 Marks)

PART – B

5 a. Describe S-attributed and L-attributed definitions.

(04 Marks)

- b. Define syntax-directed definition. Write the syntax-directed definition for simple desk calculator and give annotated parse tree for the expression (7-2) * (8-1)n. (10 Marks)
- c. Explain any two syntax-directed translation schemes.

(06 Marks)

6 Briefly explain different types of intermediate codes, with the expression,

$$a := b * - c + b * - c$$
.

(12 Marks)

b. Construct a DAG for the expression given below:

$$((x + y) - ((x + y)) * (x - y))) + ((x + y) * (x - y))$$

(04 Marks)

c. Give SDTS (Syntax-Directed Translation scheme) for switch-statement. (04 Marks)

7 Explain the concept of heap management. Give the memory hierarchy of a computer.

(08 Marks)

What is Garbage collector? Design goals for garbage collector.

(06 Marks)

Briefly explain activation records.

(06 Marks)

8 What are basic blocks? Write an algorithm for partitioning into basic blocks. (06 Marks)

Explain code generation algorithm. Generate the code for the following expression:

$$w = (a - b) + (a - c) + (a - c)$$

(10 Marks)

Briefly explain GetReg function. c.

(04 Marks)